Multi-Objective Optimisation of an Integrated Sugar Mill for Economic Enhancement

Brendan James Burke

B.Eng. (Electrical and Electronic)(Hons. I) - B.Sc. (Physics)

May 2018

A thesis submitted to embody the research carried out to fulfil the requirements for the degree of:

Doctor of Philosophy

- in Electrical Engineering
- at THE UNIVERSITY OF NEWCASTLE

Callaghan, NSW, 2308, Australia

This research was supported by an Australian Government Research Training Program (RTP) Scholarship

Declaration

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision.

The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

Brendan James Burke B.Eng. (Electrical and Electronic)(Hons. I) - B.Sc. (Physics)

May 2018

Acknowledgements

This project has been a lengthy one and after so many years there are a number of people to whom I need to express my gratitude. Firstly, I thank my past and present supervisors: Greg Adams, James Welsh and Graham Goodwin. Graham, in particular, has been an immense support for the entire duration and it was only through his guidance and encouragement that I was able to bring this to completion.

Working part-time on this PhD has only been possible with the support of Wilmar Sugar and my managers over the years, Rob Peirce and Doug Sockhill. It was due to Rob that I started this project and he has backed me through it all, both directly and from behind the scenes, for which I am incredibly grateful. Thank you also to all the operators, supervisors and engineers that I worked with at Pioneer Mill who taught me the ins and outs of sugar mills.

To all my friends, thank you for keeping me sane and being understanding even though I have been unavoidably out of touch for the latter portion of this project. Special thanks go to Andrew Wallwork and Danny Cocks. I have had many, many discussions with Andrew on sugar mills from overall operation through to the smallest minutiae that have benefited much of my work. Danny not only allowed me access to a computer cluster but also assisted in configuring my code to run on it, all my optimisations would have taken far longer to run without his help.

Finally thank you to all my family, especially my wife Keira. You have pushed, prodded, encouraged and supported me through all the stress and difficulties along the way. I could not have done this without you.

Abstract

This thesis covers the development and implementation of an integrated sugar mill (ISM) model and its subsequent use to perform multi-objective optimisation (MOO) to generate valuable data that assists production staff to optimally operate a sugar cane mill with extensive co-generation capability.

A sugar cane mill manufactures crystallised sugar from sugar cane. There is an extensive history around milling and it is a well understood process. The introduction of large scale electricity generation through the combustion of excess bagasse, a renewable energy source made from the fibrous remainder of processed sugar cane, provides new opportunities. Significant, and currently increasing, revenue can be made through generation and traditional operating strategies do not fully take this into account.

Steady-state models of Pioneer Mill in Queensland, Australia, a sugar cane mill with substantial co-generation and generation capabilities, are developed. These models can be redeveloped and applied to other mills. Each section of the mill is modelled separately, using a combination of existing models in the literature, building from first principles and using empirical relationships.

These models are used to estimate the system parameters representing the state of the sugar mill, using routinely measured operational data. Combining the separate models into an ISM and using these parameters, predictions are made on the performance of Pioneer Mill in response to changes in operating parameters.

MOO is applied to the ISM using four objectives: cane throughput, sugar lost, electricity generated and bagasse produced. In the optimisation, sugar lost is minimised while other objectives are maximised. The Pareto-optimal solution, representing the set of solutions where there are optimal trade-offs among objectives, is analysed for guidelines on the characteristics of optimal operation. A simple method of weighting is used to allow production staff to easily select a point from this solution that meets current priorities and determine the operating parameters for optimal operation of the mill.

Contents

Ał	Abstract vii			
At	Abbreviations and Notation xiii			
Li	st of A	Author's	Publications	xvii
1	Intro	oduction	I	1
	1.1	Raw Su	gar Milling	. 1
	1.2	Existing	g Work	. 4
	1.3	Contrib	utions	. 5
	1.4	Overvie	ew of Thesis	. 5
2	Bacl	kground	to Sugar Mill Operations	7
	2.1	Introduc	ction	. 7
	2.2	Sugar N	Ailling Overview and Objectives	. 8
	2.3	Availab	le Data Sources	. 11
	2.4	Details	of Pioneer Mill and Operating Parameters	. 12
		2.4.1	Milling Train	. 12
		2.4.2	Steam and Power	. 16
		2.4.3	Clarification and Filtration	. 20
		2.4.4	Multi-Effect Evaporation	. 24

CONTENTS

		2.4.5 Pans and Fugals	27
	2.5	Summary	31
3	Suga	ar Mill Model Development	33
	3.1	Introduction	33
	3.2	Overall Assumptions	34
	3.3	Milling Train	35
	3.4	Steam and Power	41
		3.4.1 Common Boiler and Turbine Equations	41
		3.4.2 Boiler 2 and STG 2	49
		3.4.3 Boiler 3 and STG 3	54
	3.5	Clarification and Filtration	61
	3.6	Multi-Effect Evaporation	65
	3.7	Pans and Fugals	68
	3.8	Summary	71
4	Sug	an Mill Model Implementation and Fitting	75
4	Suga	ar Mill Model Implementation and Fitting	15
	4.1	Introduction	75
	4.2	Non-linear Simultaneous Equation Solvers	76
	4.3	Milling Train	76
	4.4	Steam and Power	87
		4.4.1 Boiler 2 and STG 2	87
		4.4.2 Boiler 3 and STG 3	96
	4.5	Clarification and Filtration	112
	4.6	Multi-Effect Evaporation	122
	4.7	Pans and Fugals	127

CONTENTS

	4.8	Integrated Sugar Mill Model	133
	4.9	Summary	139
5	Suga	ar Mill Multi-Objective Optimisation	141
	5.1	Introduction	141
	5.2	Implementing the Multi-Objective Optimisation	142
	5.3	Multi-Objective Optimisation of the Integrated Sugar Mill Model	144
	5.4	Analysing Optimisation Results	148
	5.5	Summary	164
6	Con	clusions and Future Direction	167
	6.1	Conclusions	167
	6.2	Future Directions	169
Bil	Bibliography 173		

xi

Abbreviations and Symbols

Abbreviations

ABMA	American Boiler Manufacturers Association
BOM	Bureau of Meteorology
CPU	Central Processing Unit
DEAP	Distributed Evolutionary Algorithms in Python
EA	Evolutionary Algorithm
ESJ	Evaporator Supply Juice
FEJ	First Expressed Juice
GA	Genetic Algorithm
GCV	Gross Calorific Value
нтс	Heat Transfer Coefficient
IS	Insoluble Solids
ISM	Integrated Sugar Mill
LP	Low Pressure (steam)
MCR	Maximum Continuous Ratings
MEE	Multi-Effect Evaporator
MJ	Mixed Juice
MOO	Multi-Objective Optimisation
NSGA-II	Nondominated Sorting Genetic Algorithm II
OEM	Original Equipment Manufacturer
PC	Personal Computer
PE	Pre-Evaporator
PLC	Programmable Logic Controller
RJS	Rotary Juice Screen
SCADA	Supervisory Control And Data Acquisition
SCOOP	Scalable COncurrent Operations in Python
SLSQP	Sequential Least Squares Programming
SMRI	Sugar Milling Research Institute (South Africa)
SRI	Sugar Research Institute (Australia)
STG	Steam Turbine Generator

Symbols

Variables

A	Area (m ²)
A	Ash content (%) (boiler model)
В	Brix (bx)
C	Filling ratio
$C_f \\ E$	Cleanliness factor
Ē	Extraction (%)
E_k	Theoretical mill extraction (%)
F	Fibre content (%) (milling train model)

SYMBOLS

F	Flow (tph) (MEE set model)
GCV	
h	Gross calorific value (kJ/kg)
	Enthalpy (kJ/kg)
I_c	Imbibition coefficient
IS	Insoluble solids content (%)
K	Reabsorbtion factor
L	Loss (%)
\dot{m}	Mass flow rate (tph)
M	Moisture (%)
P	Purity (%) (pans and fugals model)
P	Pressure (kPa) (MEE and steam and power models)
Q	Energy flow (MW)
R	Ratio
r	Ratio
r	Retention (%) (mud filter model)
s	Entropy (kJ/K)
S	Sucrose content (%)
S	Mill separation efficiency (%)
S_c	RJS separation efficiency (%)
T	Temperature (°C)
U	Heat transfer coefficient $(kJ/m^2/K)$
UA	Product of HTC and Area (kW/K)
\dot{V}	Volume flow rate (m^3/s)
W	Moisture content (%)
x	Steam dryness fraction (steam and power model)
x_{air}	Humidity ratio (boiler model)
η	Efficiency (%)
ρ	Density (kg/m^3)
	-, -,

Subscripts

2mj	Second mixed juice stream
ah	Air heater
ai	Air in
air	Air stream
air	Air
$air \ req$	Air required for combustion
amb	Ambient
ao	Air out
ap	Added product to MJ
$ap \\ \frac{B}{IS}$	Fraction mud brix to insoluble solids
$\widetilde{b2}$	Boiler 2
b3	Boiler 3
bag	Bagasse stream
$bag \ prod$	Bagasse produced
bd	Boiler drum blowdown stream
belt	Belt mud filter
bp	Bleed port (on STG 3)

xiv

bs	Bleed steam (from STG 3)
bs	Bleed steam (from MEE stages)
c loss	Carbon loss
c to co	Carbon to CO
cane	Cane stream
co	Condensate out
cond	Condensate
ct	Cooling tower
cw	Cooling water (STG3)
cwi	Cooling water in
cwo	Cooling water out
da	Deaerator
desup	Desuperheater
dry gas	Dry flue gas
e	Turbine exhaust
E1th	Steam from evaporator 1 to tertiary heater
E3ph	Steam from evaporator 3 to primary heaters
econ	Economiser
esj	Evaporator supply juice stream
filt	Filtrate stream
flash	Flash tank stream
ft	Flash tank
furnace	Boiler furnace
$\int fw$	Feed water stream
gi	Flue gas in
go	Flue gas out
hgtp	High grade pan/fugal throughput of sucrose
$\frac{imbib}{fibre}$	Imbibition relative to fibre
imbib	Imbibition water added to milling train
isen	Isentropic
ji	Juice in
jo	Juice out
juice	Juice stream
ld	Letdown station
lgtp	Low grade pan/fugal throughput of impurities
liq	Liquor stream
lrg	Large rotary mud filters
mj	Mixed juice stream
mol	Molasses stream
mud	Final mud stream
mw	Boiler make-up water
paw	Pans added water
pe	Pre-evaporators
pesj	Pans added ESJ
ph	Primary heaters
phx	Process heat exchanger
pow	Generated power
prim	Primary mud stream
ps	Pan stage steam stream

SYMBOLS

pwe	Pans water evaporated
rad	Radiation
recirc	Boiler 3 economiser recirculation stream
$\frac{s}{we}$	Steam consumed relative to water evaporated
screen	Fibrous material off RJS
sh	Secondary heaters
si	Steam in
sml	Small rotary mud filters
80	Steam out
stg2	STG 2
stg3	STG 3
stg3 s1	STG 3 stage 1
$stg3 \ s2$	STG 3 stage 2
sug	Sugar
unacc	Unaccounted
v	Steam vented to atmosphere
vent	Steam vent to atmosphere
$\frac{w}{i}$	Water added to low grade pans relative to low grade throughput
$\frac{\frac{w}{i}}{\frac{W}{IS}}$	Fraction mud water to insoluble solids
$\frac{w}{s}$	Water added to high grade pans relative to high grade throughput
$\frac{WW}{IS}$	Fraction wash water applied to mud insoluble solids
wet bulb	Wet bulb temperature
$wet\ gas$	Wet flue gas
wi	Water in
wo	Water out
WW	Wash water to mud filter

Superscripts

n	Index used in the milling train model. $0 - 4$ indicates mill 1 to 5
	respectively
k	Index used in the MEE set model. 0 indicates the pre-evaporators
	while 1 – 5 indicates evaporators 1 to 5 respectively.

xvi

List of Author's Publications

- G. J. Adams, B. J. Burke, G. C. Goodwin, J. T. Gravdahl, R. D. Peirce, and A. J. Rojas. Managing Steam and concentration disturbances in multi-effect evaporators via nonlinear modelling and control. In *Proceedings of the 17th IFAC World Congress*, pages 13919–13924, Seoul, Korea, July 2008.
- B. J. Burke, A. J. Rojas, J. S. Welsh, and G. J. Adams. A Simple Bumpless Transfer Mechanism with Application to Multi-Effect Evaporators. In 2009 IEEE International Conference on Control and Automation, pages 575–580, Christchurch, New Zealand, December 2009.
- B Burke. Development of a steady-state multiple effect evaporator model and practical application in sugar mills. In *Proceedings of the Australian Society of Sugar Cane Technologists*, volume 36, pages 310–319, 2014.
- B. J. Burke. Modelling and multi-objective optimisation of a sugar mill based multi-effect evaporator set. In *Proceedings of the 19th IFAC World Congress*, pages 6716–6721, Cape Town, South Africa, August 2014.